

TOPICAL REPORT

DEVELOPMENT OF HIGH ENERGY DENSITY PRIMARY BATTERIES

BY

S. G. ABENS

PREPARED FOR

00

FACILITY FORM 602

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CONTRACT NAS 3-10613

LIVINGSTON ELECTRONIC LABORATORY

NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the National Aeronautics and Space Administration (NASA), nor any person acting on behalf of NASA:

- A.) Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B.) Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any employee or contractor of NASA, or employee of such contractor, to the extent that such employee or contractor of NASA, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with NASA, or his employment with such contractor.

Requests for copies of this report should be referred to

National Aeronautics and Space Administration Office of Scientific and Technical Information Attention: AFSS-A Washington, D. C. 20546 TOPICAL REPORT

January 1968

DEVELOPMENT OF HIGH ENERGY DENSITY PRIMARY BATTERIES

by

S. G. Abens

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CONTRACT NAS 3-10613

Technical Management
NASA Lewis Research Center
Cleveland, Ohio
Space Power Systems Division
Mr. William A. Robertson

HONEYWELL, INC.
Ordnance Division
Livingston Electronic Laboratory
Montgomeryville, Pennsylvania

DEVELOPMENT OF HIGH ENERGY DENSITY PRIMARY BATTERIES

by

S. G. Abens

ABSTRACT

Studies of discharge properties of thin-plate CuF_2 -Li cells with MF-LiClO₄ electrolyte were undertaken. Seven-plate, 4 - 5 AH (theoretical) cells were discharged at -5°C and +35°C at five rates giving current densities in the range of 1.2 to 34.5 mA/cm². At -5°C, 63.3% CuF_2 reduction efficiency and 106 wh/lb of net cell was obtained at 8.6 mA/cm² (ca. 3-hour rate); at 35°C, the corresponding figures were 61.9% and 106 wh/lb at 3.0 mA/cm² (ca. 8-hour rate).

TABLE OF CONTENTS

	PAGE NO.
1.	INTRODUCTION 1
2.	MATERIALS AND EQUIPMENT
2.1.	Cell Components
2.1.1. 2.1.2. 2.1.3. 2.1.4.	Positive Electrodes
2,2.	Cell Container 6
2.3.	Discharge Equipment 6
3.	PROCEDURE
3.1.	Construction of Cell Components 8
3.1.1. 3.1.2.	Positive Electrodes 8 Negative Electrodes 8
3.2.	Construction of Gells 9
3.3.	Preparation of Electrolyte 9
3.4.	Activation and Discharge 11
4.	RESULTS AND DISCUSSION 12

1. INTRODUCTION

This report describes construction and testing of 30 experimental CuF_2 -Li cells using methyl formate (MF)-LiClO₄ electrolyte.

The methyl formate electrolyte system was studied in CuF_2 -Li cells at this laboratory in two previous high energy density battery development programs under contracts to NASA Lewis Research Center (NAS 3-6004 and NAS 3-7632). This work showed that relatively high discharge rates (1 hour and higher) were possible with the MF electrolyte with good CuF_2 electrode utilization (60%). The wet shelf life properties of these cells were not studied, but stability tests indicated some reactivity between the electrolyte and the lithium negative electrode material.

The purpose of the tests described in this report was to establish the performance capability of the system as developed under the above contracts. The present work was performed for NASA Lewis Research Center as Task I. A. of contract NAS 3-10613.

Abens, S. G., et. al; Livingston Electronic Corporation, "Development of High Energy Density Batteries, 200 Watt Hours per Pound of Total Battery Weight Minimum", NAS 3-6004, Final Report, NASA CR-54803.

Abens, S. G., et. al; HONEYWELL INC., Livingston Electronic Laboratory, "Development of High Energy Density Primary Batteries", NAS 3-7632, Final Report, NASA CR-72331.

2. MATERIALS AND EQUIPMENT

2. 1. Cell Components

2. 1. 1. Positive Electrodes

The following materials were employed for constructing the pasted positive plates:

 $\frac{\text{CuF}_2$, Lot A - Ozark-Mahoning Co., 53% Lot KW4-12B, 47% Lot KW3-44, 1.3% H_2O .

CuF₂, Lot B - Ozark-Mahoning Co., Lot KW4-105, 0.3% H₂O.

CuF₂·2H₂O - Ozark-Mahoning Co., Lot KW3-48, 98% purity.

Powder diffraction charts for the above materials are shown in Figures 1 to 3, pages 3 - 5.

Graphite - Dixon Airspun.

Expanded Silver - Exmet Corp., "high purity" silver, mesh designation 1/0 - 5Ag14.

Pasting Solution - 2% cellulose acetate (Eastman Organic Chemicals)
dissolved in a 9:1 volume mixture of ethy1
acetate (J. T. Baker, Reagent Grade) and ethanol
(Publicker Industries, U.S.P. 200 proof).

2. 1. 2. Negative Electrodes

The solid lithium electrodes were prepared from the following materials:

<u>Lithium</u> - Foote Mineral Co., 2 x 0.015 in. ribbon (supplied packed in argon). Typical assay³:

Li 99.97 % Na 0.0069 % K 0.0056 %

³ Manufacturer's data (June 10, 1967).

FIGURE 1: DIFFRACTION PATTERN OF CuF₂ USED IN MIX A (5.1% CuF₂·2H₂O)

FIGURE 2: DIFFRACTION PATTERN OF CuF₂ USED IN MIX B (1% CuF₂·2H₂O)

FIGURE 3: DIFFRACTION PATTERN OF CuF₂•2H₂O

Expanded Silver - same as used for positive electrodes.

2. 1. 3. Electrolyte

The electrolyte used in all cells was 50 grams $LiC10_4$ in 100 ml of methyl formate (MF). The following materials were employed:

LiC10₄ - G. M. Smith, Grade Reagent, Lot B-7, Vacuum dried 96 hours at 110°C.

Methyl Formate - Matheson, Coleman & Bell, Spectroquality grade, Lot 13.

Container A - 760 ppm H₂O

Container B - $560 \text{ ppm H}_2\text{O}$.

2. 1. 4. Separation

In all cells, two layers of Reeve Angel 934-AH glass mat was used; this gave a separation thickness of 0.020 in.

2. 2. Cell Container

The elements were contained in 2 in. wide polyethylene envelopes (0.004 in. sheet thickness). The cells were placed singly in hermetically sealed glass tubes as shown in Figure 4, page 7.

2. 3. Discharge Equipment

The 4.0 ampere discharges were conducted with a NJE Corp., Model EG-22RM power supply and lamp bank in series with the cells. The remaining discharges were performed with a Hewlett-Packard Model 6200B constant current power supply in series with the cells and the required load resistance. Cell potentials were recorded on a Brown "Elektronik" recorder having a 60 second record cycle for each cell and a precision of 50 mV.

FIGURE 4: EXPLODED VIEW OF CELL DISCHARGE ASSEMBLY

3. 1. Construction of Cell Components

3. 1. 1. Positive Electrodes

In an argon glove box, the following ingredients were weighed into a Hi-Speed⁴ blender:

$\underline{\underline{\text{Mix A}}}$:	CuF ₂ , 53% Lot KW4-12B, 47% Lot KW3-44 (Lot A)	41.8 g
	CuF ₂ •2H ₂ 0	2.2*
	Graphite	4.4
Mix B:	CuF ₂ , Lot KW4-105, (Lot B)	40.0 g
	CuF ₂ •2H ₂ 0	4.0*
	Graphite	4.4

*Weight adjusted to give 5% H₂O in both mixes.

The dry mix was blended (with blender baffle in position) for 30 seconds and was transferred to a small beaker. Twenty-four ml of 2% cellulose acetate pasting solution were added, and a workable stiff paste was formed by mixing with a steel spatula (additional solvent was added as required to maintain the desired paste consistency). The paste was immediately applied to the silver support in a $2.0 \times 1.5 \times 0.03$ in. cavity. The resulting electrodes were dried and stored under vacuum.

3. 1. 2. Negative Electrodes

The ribbon was cut to 2×1.5 in. strips and placed on both sides of the expanded silver between polyethylene sheets; this assembly was compressed at 1100 psi between steel platens and the electrodes were stored under argon between the polyethylene sheets.

⁴ Hi-Speed Mixing and Blending Co., Hillside, New Jersey.

3. 2. Construction of Cells

In the argon glove box, the lithium electrodes were removed from the polyethylene sheets and trimmed to size if necessary 5 . Seven-plate, outside-negative elements were then immediately assembled using 1/4 in. oversize separators $(2-1/4 \times 1-3/4 \text{ in})$. The elements were heat-sealed into 2 in. wide polyethylene envelopes (0.004 in.) thick) and assembled into the discharge chambers between polyethylene retainer blocks as shown in Figure 5, page 10.

The weights of the cell components were as follows:

Lithium		3.2 grams	
CuF ₂ electrodes (excl	uding grids)	$9.5 \begin{array}{l} +1.2 \\ -2.1 \end{array}$	•
Silver grids		3.2	
Glass mat separation		2.0	
	Total	17.9 +1.2 grams.	

The polyethylene envelope weighed 1.0g, and the 12.0 ml of electrolyte added 15.0g for a total activated cell weight of 33.9 $^{+1.2}_{-2.1}$ g.

The geometric discharge area for these cells was calculated to be 18 sq. in. (116 sq. cm).

3. 3. Preparation of Electrolyte

The solvent was cooled to -40° , transferred to the argon glove box, and added to LiClO_{4} to give a concentration of 50g of salt/100 ml of solvent. All subsequent handling of the electrolyte was done thru serum stoppers with hypodermic syringes to avoid contamination by atmospheric moisture. The water content of the electrolyte solutions was:

⁵ A slight increase in dimensions may occur during pressing; the lithium trimmed off was no more than 5% of the total lithium weight.

FIGURE 5: CELL DISCHARGE ASSEMBLY

Batch A: 1000 ppm

Batch B: 600 ppm.

The electrolyte was stored at room temperature until required for test.

3. 4. Activation and Discharge

Prior to activation, the cells were allowed to stand in the sealed test chambers for at least two hours at the test temperature. The electrolyte was likewise allowed to equilibrate at this temperature for the same period of time. Activation was accomplished by rapidly adding 12 ml of the electrolyte via a hypodermic needle to each cell; the total activation time for a group of three cells was about 5 minutes. A mercury manometer was attached to every third cell container, and the cells were given a wet stand of 15 minutes before constant current discharge was commenced.

Three cells were tested simultaneously at each discharge rate recording cell potential, current, and chamber pressure for the cell equipped with a manometer. After all cells had fallen below the selected cut-off voltage (2.0V), discharge was terminated and the cells were opened for visual inspection.

RESULTS AND DISCUSSION

4.

Results of the discharge tests are shown in Table I, page 13, and the voltage-time data for the best cell in each group have been plotted in Figures 6 to 11, pages 15 - 20. The effect of discharge rate and temperature on the "net" wh/lb obtained from these cells can be seen from the plot of energy/weight ratio vs. discharge rate shown in Figure 8.

The best performance at -5° C (about 100 wh/1b) is obtained at about the 3-hour rate (8.6 mA/cm²), but either increasing or decreasing the current causes a sharp drop in energy output. At the 35°C discharge temperature, the best performance is likewise approached at the 3-hour rate. However, while the performance expectedly drops off at higher discharge rates, lowering the current to the 20-hour rate does not significantly alter the energy output at this temperature. This output trend seems anomalous, since one would expect the decrease in current to be more beneficial to the low temperature cells than to those at the higher temperature⁷.

An explanation might be attempted in terms of some abrupt physical change (such as precipitation of the solute at the anode surface) at the lower temperature, which is eliminated by the temperature rise from I^2R heating inside the cell at the higher currents. This phenomenon should be researched in future work with electrode polarization studies at the temperatures and current densities of interest.

The highest container pressure observed during discharge was 10 psig at 2.5A and 35°C. For all other discharges, the pressure remained below this value.

The scope of this test did not allow comparison of the two lots of ${\rm CuF}_2$ and electrolyte used. However, the data does not suggest any major effect of these variables on cell performance.

⁶ Based on the weights of electrodes, electrolyte, separation and polyethylene envelope.

In commercial batteries, increasing the discharge rate or decreasing the temperature generally have similar effect on discharge performance, i.e., the voltage and energy output are reduced in both cases.

TABLE I

CELLS	
CuF?-Li	1
OF	
PERFORMANCE	
DISCHARGE	

	Cathodic Eff., %	36.1 35.5 36.5	45.4 57.0 51.9	44.8 49.8 50.0	50.4 60.8 61.9	62.5 63.3 58.8	42.8 44.4 61.6
	Time to 2.0 VF, Hours	9.18 8.53 9.64	15.00 19.58 16.78	5.30 6.06 5.95	6.30 7.75 7.67	2.90	1.87 1.92 2.60
	Average Dischg. Voltage	2.68 2.32 2.66	2.97 2.96 2.95	2.75 2.76 2.78	2.66 3.00 2.93	2.72 2.75 1.29	2.78 2.72 2.83
CULLUI II	Initial C.C.V.	3.17 3.18 3.17	3.24 3.26 3.31	3.15 3.13 3.08	3.15 3.15 3.15	2.73 2.75 1.29	2.99 2.92 2.98
INCE OF CUI Z-LIL	Current, A (mA/cm ²)	1.2	1.2	3.0 3.0 3.0	3.0 3.0	8.8.6	8.8 6.8 6.6
TOCIFICATION OF THE OF CALL	Current,	0.133 0.133 0.133	0.133 0.133 0.133	0.350 0.350 0.350	0.350 0.350 0.350	1.00	1.00
DIDCIE	Temp.,	1 1 1 N N N	+ + + 35	1 1 1 72 72 73	+ + + + 35 + + 35	1 1 1 0 0 0 0	+35 +35 +35
	Theo. Cath.	3.38 3.19 3.51	4.40 4.56 4.30	4.15 4.26 4.17	4.37 4.47 4.34	4.17 4.59 4.26	4.36 4.32 4.23
	I					4	
	Pos.	B B B	A A A	A A A	A A A	A A A	4
	Cell No.	225	4 rv 0	7 8 6	10 11 12	13 A 14 A 15 A	16 17 18

TABLE I (Continued)

				DISCHARG	E PERFORM	DISCHARGE PERFORMANCE OF CuF ₂ -Li CELLS	Li CELLS			
Cell No.	Pos. Mix	Elec'yte Batch	Theo. Cath. AH	Temp.,	Current,	Current, A (mA/cm^2)	Initial C.C.V.	Average Dischg. Voltage	Time to 2.0 VF, Hours	Cathodic Eff., %
19	മ	А	3.65	. 5	2.50	21.6	2.34	2.44	0.50	34.2
20	മ	A	3.66	ا 5	2.50	21.6	2.42	2.59	98.0	58.8
21	В	A	3,48	ı w	2.50	21.6	2.34	2.37	98.0	61.9
22	മ	М	3.81	+35	2.50	21.6	2.60	2.58	0.45	30.2
23	В	В	4.63	+35	2.50	21.6	2.58	2.59	0.47	25.4
24	8	æ	4,46	+35	2.50	21.6	2.64	2.58	0.35	19.6
25	В	A	3.85	ı	4.00	34.5	2.27	2.36	0.38	39.5
26	B	A	3.81	ı Z	4.00	34.5	1.67	2.38	0.55	57.7
27	æ	А	3.97	1	4.00	34.5	2.14	2.37	0.43	43.3
28	മ	В	4.35	+35	4.00	34.5	2.42	2.42	0.21	19.7
29	В	Д	4.44	+35	4.00	34.5	2.28	2.42	0.30	
30	В	В	4.29	+35	4.00	34.5	2.28	2.41	0.20	18.6

OFFICIAL DISTRIBUTION LIST

July 15, 1968

National Aeronautics & Space Admin. Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: Dr. L. Rosenblum (MS 302-1)

National Aeronautics & Space Admin. Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: H. J. Schwartz (MS 500-201)

National Aeronautics & Space Admin. Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: Dr. J.S. Fordyce (MS 6-1)

National Aeronautics & Space Admin. Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: J. E. Dilley (MS 500-309)

National Aeronautics & Space Admin.
Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135
Attn: Technology Utilization Office
(MS 3-19)

National Aeronautics & Space Admin. Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: W.A. Robertson (MS 500-201) 2 copies

National Aeronautics & Space Admin. Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: Library (MS 60-3), V. F. Hlavin (MS 3-14) National Aeronautics & Space Admin. Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: Report Control (MS 5-5)

National Aeronautics & Space Admin. Scientific & Technical Information Facility College Park, Maryland 20740 Attn: NASA Representative Send 2 copies plus 1 reproducible.

National Aeronautics & Space Admin. Washington, D. C. 20546
Attn: RNW/E. M. Cohn
RNW/Arvin Smith

National Aeronautics & Space Admin. Washington, D. C. 20546
Attn: FC/A. M. Greg Andrus
RN/William H. Woodward

National Aeronautics & Space Admin. Goddard Space Flight Center Greenbelt, Maryland 20771 Attn: Gerald Halpert, Code 735

National Aeronautics & Space Admin. Goddard Space Flight Center Greenbelt, Maryland 20771 Attn: Thomas Hennigan, Code 716.2

National Aeronautics & Space Admin. Goddard Space Flight Center Greenbelt, Maryland 20771 Attn: E. R. Stroup (Code 636.2)

National Aeronautics & Space Admin. Goddard Space Flight Center Greenbelt, Maryland 20771 Attn: Joseph Sherfey, Code 735

National Aeronautics & Space Admin. Langley Research Center Instrument Research Division Hampton, Virginia 23365 Attn: John L. Patterson, MS-234 National Aeronautics & Space Admin. Langley Research Center Instrument Research Division Hampton, Virginia 23365 Attn: M. B. Seyffert, MS 112

National Aeronautics & Space Admin. Langley Research Center Langley Station Hampton, Virginia 23365 Attn: S.T.Peterson/Harry Ricker

National Aeronautics & Space Admin. Geo. C. Marshall Space Flight Center Huntsville, Alabama 35812 Attn: Philip Youngblood

National Aeronautics & Space Admin. Geo. C. Marshall Space Flight Center Huntsville, Alabama 35812 Attn: Richard Boehme, Bldg.4487-BB

National Aeronautics & Space Admin. Manned Spacecraft Center Houston, Texas 77058 Attn: William R. Dusenbury Propulsion & Energy Systems Branch Bldg. 16, Site 1

National Aeronautics & Space Admin. Manned Spacecraft Center Houston, Texas 77058 Attn: Richard Ferguson (EP-5)

National Aeronautics & Space Admin.
Manned Spacecraft Center
Houston, Texas 77058
Attn: Robert Cohen,
Gemini Project Office

National Aeronautics & Space Admin. Manned Spacecraft Center Houston, Texas 77058 Attn: Forrest E. Eastman (EE-4)

National Aeronautics & Space Admin. Washington, D. C. 20546
Attn: Office of Technology
Utilization

National Aeronautics & Space Admin. Ames Research Center Pioneer Project Moffett Field, California 94035 Attn: Arthur Wilbur/A.S. Hertzog

National Aeronautics & Space Admin. Ames Research Center Moffett Field, California 90435 Attn: John Rubenzer Biosatellite Project

National Aeronautics & Space Admin. Electronics Research Center 575 Technology Square Cambridge, Mass. 03129 Attn: Dr. Sol Gilman

Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, California 91103 Attn: Mr. Aiji Uchiyama

DEPARTMENT OF THE ARMY

U.S. Army Mobility Equipment R & D
Center

Command Officer

Fort Belvoir, Virginia 22060

Electrical Power Branch
Energy Conversion Research Lab

Commanding General
U. S. Army Weapons Command
Attn: AMSWE-RDR, Mr. G. Reinsmith
Rock Island Arsenal
Rock Island, Illinois 61201

U. S. Army Research Office Box CM, Duke Station Furham, North Carolina 27706 Attn: Dr. Wilhelm Jorgensen

U. S. Army Research Office Chief, R & D Department of the Army 3D442, The Pentagon Washington, D. C. 20546

U. S. Army Natick Laboratories Clothing & Organic Materials Div. Natick, Massachusetts 01760 Attn: G. A. Spano Commanding Officer
U.S. Army Electronics R & D Labs.
Fort Monmouth, New Jersey 07703
Attn: Power Sources Division
(SELRA/PS)

Army Materiel Command Research Division AMCRD-RSCM-T-7 Washington, D. C. 20315 Attn: John W. Crellin

Army Materiel Command
Development Division
AMCRD-DE-MO-P
Washington, D. C. 20135
Attn: Marshall D. Aiken

U.S. Army TRECOM
Fort Eustis, Virginia 23604
Attn: Dr. R.L.Echols (SMOFE-PSG)

U. S. Army TRECOM
Fort Eustis, Virginia 23604
Attn: Leonard M. Bartone
(SMOFE-ASE)

U. S. Army Mobility Command Research Division Warren, Michigan 48090 Attn: O. Renius (AMSMO-RR)

Harry Diamond Laboratories
Room 300, Building 92
Conn. Ave., & Van Ness Street,N.W.
Washington, D. C. 20438
Attn: Nathan Kaplan

DEPARTMENT OF THE NAVY

Office of Naval Research Washington, D. C. 20360 Attn: Head, Power Branch, Code 429

Office of Naval Research Department of the Navy Washington, D. C. 20360 Attn: H. W. Fox (Code 425) Naval Research Laboratory Washington, D.C. 20390 Attn: Dr. J.C. White, Code 6160

U. S. Navy Special Projects Division Marine Engineering Laboratory Annapolis, Maryland 21402 Attn: J. H. Harrison

Naval Air Systems Command
Department of the Navy
Washington, D. C. 20360
Attn: Milton Knight (CODE AIR-340C)

Commanding Officer (Code QEWE, E. Bruess/H. Schultz) U. S. Naval Ammunition Depot Crane, Indiana 47522

Naval Ordnance Laboratory
Department of the Navy
Corona, California 91720
Attn: William C. Spindler, Code 441

Naval Ordnance Laboratory Silver Spring, Maryland 20910 Attn: Philip D. Cole (Code 232)

Commander, Naval Ship Systems
Command
Department of the Navy
Washington, D. C. 20360
Attn: C. F. Viglotti (Code 66605)

Bureau of Naval Weapons
Department of the Navy
Washington, D. C. 20360
Attn: Whitewall T. Beatson
Code RAAE-52

Commander, Naval Ship Systems
Command
Department of the Navy
Washington, D. C. 20360
Attn: Bernard B. Rosenbaum
Code 03422

DEPARTMENT OF THE AIR FORCE
Flight Vehicle Power Branch
Aero Propulsion Laboratory
Wright-Patterson AFB, Ohio 45433
Attn: James E. Cooper

AF Cambridge Research Lab.
Attn: CRFE
L. G. Hanscom Field
Bedford, Massachusetts 01731
Attn: Dr. R. Payne

AF Cambridge Research Lab.
Attn: CRE
L. G. Hanscom Field
Bedford, Massachusetts 01731
Attn: Francis X. Doherty
Edward Raskin (Wing F)

Headquarters, U.S.Air Force (AFRDER-AS) Washington, D. C. 20325 Attn: Major G. Starkey

Headquarters, U.S.Air Force (AFRDER-AS)
Washington, D. C. 20325
AttN: Lt.Col. William G. Alexander

Rome Air Development Center, ESD Attn: Frank J. Mollura (RASSM) Griffis AFB, New York 13442

Space Systems Division
Los Angeles Air Force Station
Los Angeles, California 90045
Attn: SSSD

OTHER GOVERNMENT AGENCIES

National Bureau of Standards
Washington, D. C. 20234
Attn: Dr. W. J. Hamer

National Bureau of Standards Washington, D. C. 20234 Attn: Dr. A. Brenner

Office, Sea Warfare System The Pentagon Washington, D. C. 20310 Attn: G. B. Wareham

U. S. Atomic Energy Commission Auxiliary Power Branch (SNAP) Division of Reactor Development Washington, D. C. 20325 Attn: Lt.Col. George H. Ogburn, Jr. Lt. Col. John H. Anderson Advanced Space Reactor Branch Division of Reactor Development U. S. Atomic Energy Commission Washington, D. C. 20325

Mr. Donald A. Hoatson Army Reactors, DRD U. S. Atomic Energy Commission Washington, D. C. 20545

Bureau of Mines 4800 Forbes Avenue Pittsburgh, Pennsylvania 15213 Attn: Dr. Irving Wender

Clearing House for Scientific & Technical Information 5285 Port Royal Road Springfield, Virginia 22151

PRIVATE ORGANIZATIONS

Aerojet-General Corporation
Chemical Products Division
Azusa, California 91702
Attn: William H. Johnson

Aerojet-General Corporation Von Karman Center Bldg. 312, Dept. 3111 Azusa, California 91703 Attn: Mr. Russ Fogle

Aeronutronic, Div. of Philco Corp. Technical Information Services Ford Road Newport Beach, California 92663

Aerospace Corporation
P. O. Box 95085
Los Angeles, California 90045
Attn: Library Acquisition Group

Aerospace Corporation Systems Design Division 2350 El Segundo Boulevard, East El Segundo, California 90246 Attn: John G. Krisilas

Allis-Chalmers Mfg. Co. 1100 South 70th Street Milwaukee, Wisconsin 53201 Attn: Dr. P. Joyner A. M. F. Attn: Dr. Lloyd H. Shaffer 689 Hope Street Springdale, Connecticutt 06879

American University
Mass. & Nebraska Ave., N. W.
Washington, D. C. 20016
Attn: Dr. R. T. Foley
Chemistry Department

Arthur D. Little, Inc. Acorn Park Cambridge, Massachusetts 02140 Attn: Dr. Ellery W. Stone

Atomics International Division North American Aviation, Inc. 8900 DeSota Avenue Canoga Park, California 91304 Attn: Dr. H. L. Recht

Battelle Memorial Institute 505 King Avenue Columbus, Ohio 43201 Attn: Dr. C. L. Faust

Bell Laboratories Murray Hill, New Jersey 07971 Attn: U. B. Thomas

The Boeing Company
P. O. Box 3868
Seattle, Washington 98124
Attn: Sid Gross, MS 85-86

Borden Chemical Company Central Research Laboratory P. O. Box 9524 Philadelphia, Pennsylvania 19124

Burgess Battery Company
Foot of Exchange Street
Freeport, Illinois 61033
Attn: Dr. Howard J. Strauss

C & D Batteries
Div. of Electric Autolite Co.
Conshohocken, Pennsylvania 19428
Attn: Dr. Eugene Willihnganz

Calvin College Grand Rapids, Michigan 49506 Attn: Prof. T. P. Dirkse

Catalyst Research Corporation 6101 Falls Road Baltimore, Maryland 21209 Attn: Dr. H. Goldsmith

ChemCell Inc. 150 Dey Road Wayne, New Jersey 07470 Attn: Peter D. Richman

Cubic Corporation
9233 Balboa Avenue
San Diego, California 92123
Attn: Librarian
Mr. Judy Kalak

Delco-Remy, Division General Motors
Corporation
2401 Columbus Avenue
Anderson, Indiana 46011
Attn: Director of Engineering

McDonnell-Douglas Corporation Astropower Laboratory 2121 Campus Drive Newport Beach, California 92663 Attn: Dr. George Moe

Dynatech Corporation
17 Tudor Street
Cambridge, Massachusetts 02139
Attn: R. L. Wentworth

Eagle-Picher Company Post Office Box 57 Joplin, Missouri 64801 Attn: E. P. Broglio

Electric Storage Battery, Inc. Missile Battery Division 2510 Louisburg Road Raleigh, North Carolina 27604

Electric Storage Battery, Inc. Research Center 19 West College Avenue Yardley, Pennsylvania 19067 Attn: Librarian Electrochemical & Water Desalination Technology 13401 Kootenay Drive Santa Ana, California 92705 Attn: Dr. Carl Berger

Electrochimica Corporation 1140 O-Brien Drive Menlo Park, California 94025 Attn: Dr. Morris Eisenberg

Electro-Optical Systems, Inc. 300 North Halstead
Pasadena, California 91107
Attn: Martin Klein

Elgin National Watch Company 107 National Street Elgin, Illinois 60120 Attn: T. Boswell

Emhart Corporation
Box 1620
Hartford, Connecticut 06102
Attnd: Dr. W. P. Cadogan

Engelhard Industries, Inc. 497 Delancy Street
Newark, New Jersey 07105
Attn: Dr. J. G. Cohn

Dr. Arthur Fleischer 466 South Center Street Orange, New Jersey 07050

General Electric Company
Schenectady, New York 12301
Attn: Dr. R.C. Osthoff/Dr. W. Carson
Advanced Technology Lab.

General Electric Company
Missile & Space Division
Spacecraft Department
P. O. Box 8555
Philadelphia, Pennsylvania 19101
Attn: E.W. Kipp, Room U-2307

General Electric Company
Battery Products Division
P. O. Box 114
Gainesville, Florida 32601
Attn: W.H.Roberts/Dr. R. L. Hadley

General Electric Company Research & Development Center P. O. Box 8 Schenectady, New York 12301 Attn: Dr. H. Liebhafsky

General Mortors-Defense Research Laboratories 6767 Hollister Street Santa Barbara, California 93105 Attn: Dr. J.S.Smatko/Dr. C.R.Russell

General Telephone & Electronics Labs. Bayside, New York 11352 Attn: Dr. Paul Goldberg

Globe-Union, Inc.
900 East Keefe Avenue
Milwaukee, Wisconsin 53201
Attn: Dr. C. K. Morehouse

Gould-National Batteries, Inc. Engineering & Research Center 2630 University Avenue, S. E. Minneapolis, Minnesota 55418 Attn: D. L. Douglas

Gulton Industries
Alkaline Battery Division
212 Durham Avenue
Metuchen, New Jersey 08840
Attn: Dr. Robert Shair

Grumman Aircraft
OPGS, Plant 35
Bethpage, Long Island, New York 11101
Attn: Bruce Clark

Hughes Aircraft Corporation Centinda Avenue & Teale Street Culver City, California 90230 Attn: T. V. Carvey

Hughes Aircraft Corporation Bldg. 366, M. S. 524 El Segundo, California 90245 Attn: P. C. Ricks

Hughes Research Labs., Corp. 2011 Malibu, California 90265 Attn: T. M. Hahn ITT Federal Laboratories 500 Washington Avenue Nutley, New Jersey 07110 Attn: Dr. P. E. Lighty

ITT Research Institute 10 West 35th Street Chicago, Illinois 60616 Attn: Dr. H. T. Francis

Institute for Defense Analyses R & E Support Division 400 Army-Navy Drive Arlington, Virginia 22202 Attn: Mr. R. Hamilton

Institute for Defense Analyses R & E Suppport Division 400 Army-Navy Drive Arling, Virginia 22202 Attn: Dr. G. Szego

Idaho State University
Department of Chemistry
Pocatello, Idaho 83201
Attn: Dr. G. Myron Arcand

Institute of Gas Technology State and 34th Street Chicago, Illinois 60616 Attn: B. S. Baker

International Nicek Co. 1000-16th Street, N. W. Washington, D. C. 20036 Attn: Wm. C. Mearns

Johns Hopkins University Applied Physics Laboratory 8621 Georgia Avenue Silver Spring, Maryland 20910 Attn: Richard E. Evans

Johns-Manville R & E Center P. O. Box 159
Manville, New Jersey 08835
Attn: J. S. Parkinson

Leesona Moos Laboratories
Lake Success Park, Community Drive
Great Neck, New York 11021
Attn: Dr. H. Oswin

Lockheed Missiles & Space Company 1111 Lockheed Way Sunnyvale, California Dept. 62-33, Bldg. 154 Attn: R. E. Corbett

Lockheed Missiles & Space Co. Dept. 62-30 3251 Hanover Street Palo Alto, California 94304 Attn: J. E. Chilton

Lockheed Missiles & Space Company Technical Information Center 3251 Hanover Street Palo Alto, California 93404

Mallory Battery Company
Broadway & Sunnyside Lane
North Tarrytown, New York 10591
Attn: R. R. Clune

P. R. Mallory & Co., Inc.
Northwest Industrial Park
Burlington, Massachusetts 01803
Attn: Dr. Per Bro

P. R. Mallory & Company, Inc. Technical Services Laboratory Indianapolis, Indiana 46206 Attns: A. S. Doty

P. R. Mallory & Co., Inc. 3029 E. Washington Street Indianapolis, Indiana 46206 Attn: Technical Librarian

Marquardt Corporation 16555 Saticoy Street Van Nuys, California 91406 Attn: Dr. H. G. Krull

Martin Company
Electronics Research Cepartment
P. O. Box #179
Denver, Colorado 80201
Attn: William B. Collins, MS 1620

Material Research Corporation Orangeburg, New York 10962 Attn: V. E. Adler Mauchly Systems, Inc. Fort Washington Industrial Park Fort Washington, Pa. Attn: John H. Waite

Melpar Technical Information Center 7700 Arlington Blvd. Falls Church, Virginia 22046

Metals and Controls Division Texas Instruments, Inc. 34 Forrest Street Attleboro, Massachusetts 02703 Attn: Dr. E. M. Jost

Midwest Research Institute 425 Volker Boulevard Kansas City, Missouri 64110 Attn: Physical Science Laboratory

Monsanto Research Corporation Everett, Massachusetts 02149 Attn: Dr. J. O. Smith

North American Aviation, Inc. 12214 Lakewood Boulevard Downey, California 90241 Attn: Burton M. Otzinger

North American Aviation, Inc.
Rocketdyne Division
6633 Canoga Avenue
Canoga Park, California 91303
Attn: Library

North American Aviation Co. S & ID Division Downey, California 90241 Attn: Dr. James Nash

Oklahoma State University
Stillwater, Oklahoma 74075
Attn: Prof. William L. Hughes
School of Electrical Eng.

Dr. John Owen
P. O. Box 87
Bloomfield, New Jersey 07003

Power Information Center University of Pennsylvania 3401 Market Street, Rm. 2107 Philadelphia, Pa. 19104

Prime Battery Corp. 15600 Cornet Street Santa Fe Springs, California 90670

RAI Research Corp. 36 - 40 37th Street Long Island City, New York 11101

Philco Corporation
Division of the Ford Motor Co.
Blue Bell, Pennsylvania 19422
Attn: Dr. Phillip Colet

Radio Corporation of America Astro Corporation P. O. Box 800 Hightstown, New Jersey 08540 Attn: Seymour Winkler

Radio Corporation of America 415 South Fifth Street Harrison, New Jersey 07029 Attn: Dr. G. S. Lozier, Bldg.18-2

Southwest Research Institute 8400 Culebra Road San Antonio, Texas 78206 Attn: Library

Sonotone Corporation Saw Mill River Road Elmsford, New York 10523 Attn: A. Mundel

Thomas A. Edison Research Lab.
McGraw Edison Company
Watchung Avenue
West Orange, New Jersey 07052
Attn: Dr. P. F. Grieger

Texas Instruments, Inc.
P. O. Box 5936
Dallas, Texas 75222
Attn: Dr. Isaac Trachtenberg

TRW Systems, Inc.
One Space Park
Redondo Beach, California 90278
Attn: Dr. A. Krausz, Bldg. 60, Rm. 147

TRW Systems, Inc.
One Space Park
Redondo Beach, California 90278
Attn: Dr. Herbert P. Silverman

TRW, Inc.
23555 Euclid Avenue
Cleveland, Ohio 44177
Attn: Librarian
W. S. Bishop, Bldg. 15

Tyco Laboratories, Inc.
Bear Hill
Hickory Drive
Waltham, Massachusetts 02154
Attn: Dr. A. C. Makrides

Unified Sciences Associates, Inc. 826 S. Arroyo Parkway Pasadena, California 91105 Attn: Dr. S. Naiditeh

Union Carbide Corporation Development Laboratory Library P. O. Box 6056 Cleveland, Ohio 44101

Electromite Corporation Attn: R. H. Sparks, Gen. Manager 562 Meyer Lane Redondo Beach, California 90278

Union Carbide Corporation
Parma Laboratory
Parma, Ohio 44130
Attn: Dr. Robert Powers

University of California Space Science Laboratory Berkeley, California 94720 Attn: Dr. C. W. Tobias University of Pennsylvania Electrochemistry Laboratory Philadelphia, Pa. 19104 Attn: Prof. John O'M. Bockris

University of Toledo Toledo, Ohio 43606 Attn: Dr. Albertine Krohn

Westinghouse Electric Corp. Research and Development Center Churchill Borough Pittsburgh, Pennsylvania 15235

Whittaker Corporation
Narmco R & D Division
12032 Vose Street
North Hollywood, California 91605
Attn: Dr. M. Shaw

Yardney Electric Corporation 40 Leonard Street New York, New York 10013 Dr. Geo. Dalin

Whittaker Corporation
3850 Olive Street
Denver, Colorado 80237
Attn: J. W. Reitzer,
Borch Wendir

Western Electric Company Suite 802, RCA Building Washington, D. C. 20006 Attn: R. T. Fiske

Westinghouse Electric Corporation Research & Development Center Churchill Borough Pittsburgh, Pennsylvania 15235 Attn: Dr. A. Langer